LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION - **CHEMISTRY**

FOURTH SEMESTER - NOVEMBER 2013

CH 4502 - ELECTRO CHEMISTRY

Date: 05/11/2013	Dept. No.	Max.: 100 Marks
Time \cdot 1.00 \cdot 4.00		

PART - A

Answer ALL questions:

 $(10 \times 2 = 20)$

- 1. Define the term electrode potential and how would you represent Standard Hydrogen electrode.
- 2. For the cell Zn $|Zn^{2+}||Cu^{2+}|$ Cu
 - i) Write down the electrochemical reaction.
 - ii) Calculate the emf of the cell at 298K.

The standard reduction potential at 298K are

 Zn^{2+} | Zn : -0.763 V Cu^{2+} | Cu : +0.337 V

- 3. Write the electrode reaction and the potential of calomel electrode.
- 4. What is meant by concentration cell and mention its types.
- 5. Define ionic strength of solutions.
- 6. What is meant by the term Van't Hoff factor?
- 7. Define the term decomposition potential.
- 8. Write Debye Huckel Onsager equation.
- 9. Define Hydrogen overvoltage.
- 10. Write down Ilkovic equation and explain the terms involved in it.

PART - B

Answer EIGHT questions:

 $(8 \times 5 = 40)$

- 11. What is meant by electrochemical series? Mention any two applications.
- 12. Discuss on the following:
 - i) Metal metal ion electrode
 - ii) Metal insoluble salt electrode.
- 13. Write a short note on reference electrodes.
- 14. A zinc rod is placed in 0.1 M solution of zinc sulphate at 25° C. Assuming that the salt is dissociated to the extent of 95% at this dilution. Calculate the potential of the electrode at this temperature. E^{0} Zn²⁺, Zn = -0.76 V.
- 15. How would you determine the p^H of the given solution using quinhydrone electrode. Mention its demerits.
- 16. Calculate the equilibrium constant of the cell reaction

 $2 \text{ Ag}^+ + \text{Zn} \quad \Box \quad 2 \text{ Ag} + \text{Zn}^{2+}$ occurring in the Zinc-silver cell at 25^0C when $[\text{Zn}^{2+}] = 0.10 \text{ M}$ and $[\text{Ag}^+] = 10 \text{ M}$. The EMF of the cell is found to be 1.62 V.

- 17. How does specific and equivalent conductance vary with dilution?
- 18. Discuss on Arrhenius theory of electrolytic dissociation and mention its limitations.
- 19. Mention the principle of conductometric titrations. Discuss the titration curve obtained in the titration of a strong acid with a weak base.

- 20. Give an account of the Debye-Huckel theory of strong electrolytes.
- 21. Calculate the EMF of the concentration cell consisting of Zinc electrodes, one immersed in a solution of 0.01 molality and other in a solution of 0.1 molality at 25° C.The two solutions are separated by a salt bridge. The mean activity coefficient of the electrolyte may be assumed to be unity.
- 22. Discuss the electrochemical theory of corrosion.

PART - C

Answer any FOUR questions:

 $(4 \times 10 = 40)$

- 23. Define electromotive force. How is it measured using potentiometer?
- 24. Discuss in detail the construction and working of Weston saturated and unsaturated cell.
- 25. a)The cell Cd \mid CdCl_{2 1m} \mid AgCl_(s) \mid Ag has an emf of 0.675 volt at 25 $^{\circ}$ C and the temperature coefficient of emf is -0.00065 volt deg⁻¹. Calculate ΔH and ΔS for the cell reaction.
 - b) How would you calculate the valency of ions in doubtful cases using EMF method?
- 26. Discuss the principle underlying potentiometric titrations and how would you carry out acid-base and redox titrations potentiometrically?
- 27. Define transport number. How is it determined using moving boundary method?
- 28. a) Illustrate how the solubility of a sparingly soluble salt can be determined with the help of conductance measurement.
 - b) Derive an expression for the EMF of concentration cell with transference.

\$\$\$\$\$\$\$